# JAVA 8新特性

JAVA Lambda 2019-03-29

# 概述

Java 8(又称为 jdk 1.8) 是 Java 语言开发的一个主要版本。 Oracle 公司于 2014 年 3 月 18 日发布 Java 8 ,它支持函数式编程,新的 JavaScript 引擎,新的日期 API,新的Stream API 等。

  • Lambda 表达式 − Lambda允许把函数作为一个方法的参数(函数作为参数传递进方法中。
  • 方法引用 − 方法引用提供了非常有用的语法,可以直接引用已有Java类或对象(实例)的方法或构造器。与lambda联合使用,方法引用可以使语言的构造更紧凑简洁,减少冗余代码。
  • 默认方法 − 默认方法就是一个在接口里面有了一个实现的方法。
  • 新工具 − 新的编译工具,如:Nashorn引擎 jjs、 类依赖分析器jdeps。
  • Stream API −新添加的Stream API(java.util.stream) 把真正的函数式编程风格引入到Java中。
  • Date Time API − 加强对日期与时间的处理。
  • Optional 类 − Optional 类已经成为 Java 8 类库的一部分,用来解决空指针异常。
  • Nashorn, JavaScript 引擎 − Java 8提供了一个新的Nashorn javascript引擎,它允许我们在JVM上运行特定的javascript应用。

# Lambda 表达式

# 概述

Lambda 表达式,也可称为闭包,它是推动 Java 8 发布的最重要新特性。Lambda 允许把函数作为一个方法的参数(函数作为参数传递进方法中)。使用 Lambda 表达式可以使代码变的更加简洁紧凑。

# 语法

(parameters) -> expression 或 (parameters) ->{ statements; }

# 特性

  • 可选类型声明:不需要声明参数类型,编译器可以统一识别参数值。
  • 可选的参数圆括号:一个参数无需定义圆括号,但多个参数需要定义圆括号。
  • 可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
  • 可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定明表达式返回了一个数值。

# 变量作用域

lambda 表达式只能引用标记了 final 的外层局部变量,这就是说不能在 lambda 内部修改定义在域外的局部变量,否则会编译错误。

# 实例

  • 不需要参数,返回值为 5
    () -> 5

  • 接收一个参数(数字类型),返回其2倍的值
    x -> 2 * x

  • 接受2个参数(数字),并返回他们的差值
    (x, y) -> x – y

  • 接收2个int型整数,返回他们的和
    (int x, int y) -> x + y

  • 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)
    (String s) -> System.out.print(s)

  • java 7 排序

   private void sortUsingJava7(List<String> names){   
      Collections.sort(names, new Comparator<String>() {
         @Override
         public int compare(String s1, String s2) {
            return s1.compareTo(s2);
         }
      });
   }
  • java 8 排序
   private void sortUsingJava8(List<String> names){
      Collections.sort(names, (s1, s2) -> s1.compareTo(s2));
   }

# 编译问题

  • lambda 表达式的局部变量可以不用声明为 final,但是必须不可被后面的代码修改(即隐性的具有 final 的语义)
int num = 1;  
Converter<Integer, String> s = (param) -> System.out.println(String.valueOf(param + num));
s.convert(2);
num = 5;  
//报错信息:Local variable num defined in an enclosing scope must be final or effectively 
 final
  • 在 Lambda 表达式当中不允许声明一个与局部变量同名的参数或者局部变量,编译会出错。
String first = "";  
Comparator<String> comparator = (first, second) -> Integer.compare(first.length(), second.length());  

# 方法引用

方法引用通过方法的名字来指向一个方法。方法引用可以使语言的构造更紧凑简洁,减少冗余代码。方法引用使用一对冒号 :: 。

  • 构造器引用:它的语法是Class::new,或者更一般的Class< T >::new,实例如下:
final Car car = Car.create( Car::new );
final List< Car > cars = Arrays.asList( car );
  • 静态方法引用:它的语法是Class::static_method,实例如下:
cars.forEach( Car::collide )
  • 特定类的任意对象的方法引用:它的语法是Class::method,实例如下:
cars.forEach( Car::repair );
  • 特定对象的方法引用:它的语法是instance::method,实例如下:
final Car police = Car.create( Car::new );
cars.forEach( police::follow );

# 实例

  • 代码块
import java.util.List;
import java.util.ArrayList;
 
public class Java8Tester {
   public static void main(String args[]){
      List names = new ArrayList();
        
      names.add("Google");
      names.add("Runoob");
      names.add("Taobao");
      names.add("Baidu");
      names.add("Sina");
        
      names.forEach(System.out::println);
   }
}
  • 输出结果
Google
Runoob
Taobao
Baidu
Sina

# 函数式接口

函数式接口(Functional Interface)就是一个有且仅有一个抽象方法,但是可以有多个非抽象方法的接口。函数式接口可以被隐式转换为 lambda 表达式。Lambda 表达式和方法引用(实际上也可认为是Lambda表达式)上。

  • 如定义了一个函数式接口如下:
@FunctionalInterface
interface GreetingService 
{
    void sayMessage(String message);
}
  • 那么就可以使用Lambda表达式来表示该接口的一个实现
GreetingService greetService1 = message -> System.out.println("Hello " + message);
  • (注:JAVA 8 之前一般是用匿名类实现的)

JDK 1.8 之前已有的函数式接口:

  • java.lang.Runnable
  • java.util.concurrent.Callable
  • java.security.PrivilegedAction
  • java.util.Comparator
  • java.io.FileFilter
  • java.nio.file.PathMatcher
  • java.lang.reflect.InvocationHandler
  • java.beans.PropertyChangeListener
  • java.awt.event.ActionListener
  • javax.swing.event.ChangeListener

JDK 1.8 新增加的函数接口:

  • java.util.function

{% blockquote %} 提醒:加不加 @FunctionalInterface 对于接口是不是函数式接口没有影响,该注解只是提醒编译器去检查该接口是否仅包含一个抽象方法 {% endblockquote %}

# 默认方法

Java 8 新增了接口的默认方法。充分展示了Java平台中概念的一致性与JDK向前兼容之间的矛盾。简单说,我们用default来标注默认类,被default所标注的方法,需要提供实现,而子类可以选择实现或者不实现该方法。通过这样的机制,就能够实现在接口中加入新方法,则子类无需进行任何改动,需要注意的是default只能用于接口中修饰方法,不能在类中使用

  • 为什么要有这个特性?

{% blockquote %} 首先,之前的接口是个双刃剑,好处是面向抽象而不是面向具体编程,缺陷是,当需要修改接口时候,需要修改全部实现该接口的类,目前的 java 8 之前的集合框架没有 foreach 方法,通常能想到的解决办法是在JDK里给相关的接口添加新的方法及实现。然而,对于已经发布的版本,是没法在给接口添加新方法的同时不影响已有的实现。所以引进的默认方法。他们的目的是为了解决接口的修改与现有的实现不兼容的问题。 {% endblockquote %}

upload successful

  • 默认方法的冲突:父类优先原则

{% blockquote %} 接口中的默认方法和继承的父类方法冲突了,那么这个时候会选择父类中的方法,而不是接口中的默认方法。这个也叫做类优先原则,它可以保证与Java7的兼容性。也就是说,在接口中实现的一个默认方法,它不会对Java8之前写的代码产生影响。所以,我们也不能在接口中定义toString()和equals()这样的接口,因为根据类优先的原则,Object中的这些方法会保留。如果一个类实现了多个接口,那么通过使用Override重写的方式解决冲突问题。 {% endblockquote %}

# Stream

Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。

+--------------------+       +------+   +------+   +---+   +-------+
| stream of elements +--------> |filter+--> |sorted+--> |map+--> |collect|
+--------------------+       +------+   +------+   +---+   +-------+
  • 以上的流程转换为 Java 代码为:
List<Integer> transactionsIds = 
widgets.stream()
             .filter(b -> b.getColor() == RED)
             .sorted((x,y) -> x.getWeight() - y.getWeight())
             .mapToInt(Widget::getWeight)
             .sum();

# Stream特性

首先,Stream(流)是一个来自数据源的元素队列并支持聚合操作

  • 元素是特定类型的对象,形成一个队列。 Java中的Stream并不会存储元素,而是按需计算。
  • 数据源 流的来源。 可以是集合,数组,I/O channel, 产生器generator 等。
  • 聚合操作 类似SQL语句一样的操作, 比如filter, map, reduce, find, match, sorted等。

和以前的Collection操作不同, Stream操作还有两个基础的特征:

  • Pipelining: 中间操作都会返回流对象本身。 这样多个操作可以串联成一个管道, 如同流式风格(fluent style)。 这样做可以对操作进行优化, 比如延迟执行(laziness)和短路( short-circuiting)。
  • 内部迭代: 以前对集合遍历都是通过Iterator或者For-Each的方式, 显式的在集合外部进行迭代, 这叫做外部迭代。 Stream提供了内部迭代的方式, 通过访问者模式(Visitor)实现。

# 生成流

在 Java 8 中, 集合接口有两个方法来生成流:

  • stream() − 为集合创建串行流。

  • 串行流就是把内容整体遍历依次的逐个处理。不涉及到多线程问题。

  • parallelStream() − 为集合创建并行流。

  • 并行流就是把内容分割成多个数据块,每个数据块对应一个流,然后用多个线程分别处理每个数据块中的流。

  • 使用parallelStream()方法可以得到一个并行流,并行流底层使用的是forkjoin框架,对于一些计算量比较大的任务,使用并行流可能极大的提升效率。

Fork/Join框架

将一个大任务进行拆分Fork,拆分成若干个小任务(拆到不可再拆时),再将若干个小任务的计算结果进行Join汇总。 ForkJoin框架采用的是“工作窃取模式”,传统线程在处理任务时,假设有一个大任务被分解成了20个小任务,并由四个线程A,B,C,D处理,理论上来讲一个线程处理5个任务,每个线程的任务都放在一个队列中,当B,C,D的任务都处理完了,而A因为某些原因阻塞在了第二个小任务上,那么B,C,D都需要等待A处理完成,此时A处理完第二个任务后还有三个任务需要处理,可想而知,这样CPU的利用率很低。而ForkJoin采取的模式是,当B,C,D都处理完了,而A还阻塞在第二个任务时,B会从A的任务队列的末尾偷取一个任务过来自己处理,C和D也会从A的任务队列的末尾偷一个任务,这样就相当于B,C,D额外帮A分担了一些任务,提高了CPU的利用率。

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");
List<String> filtered = strings.stream().filter(string -> !string.isEmpty()).collect(Collectors.toList());

# 实例

  • 代码
import java.util.ArrayList;
import java.util.Arrays;
import java.util.IntSummaryStatistics;
import java.util.List;
import java.util.Random;
import java.util.stream.Collectors;
import java.util.Map;
 
public class Java8Tester {
   public static void main(String args[]){
      System.out.println("使用 Java 7: ");
        
      // 计算空字符串
      List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");
      System.out.println("列表: " +strings);
      long count = getCountEmptyStringUsingJava7(strings);
        
      System.out.println("空字符数量为: " + count);
      count = getCountLength3UsingJava7(strings);
        
      System.out.println("字符串长度为 3 的数量为: " + count);
        
      // 删除空字符串
      List<String> filtered = deleteEmptyStringsUsingJava7(strings);
      System.out.println("筛选后的列表: " + filtered);
        
      // 删除空字符串,并使用逗号把它们合并起来
      String mergedString = getMergedStringUsingJava7(strings,", ");
      System.out.println("合并字符串: " + mergedString);
      List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);
        
      // 获取列表元素平方数
      List<Integer> squaresList = getSquares(numbers);
      System.out.println("平方数列表: " + squaresList);
      List<Integer> integers = Arrays.asList(1,2,13,4,15,6,17,8,19);
        
      System.out.println("列表: " +integers);
      System.out.println("列表中最大的数 : " + getMax(integers));
      System.out.println("列表中最小的数 : " + getMin(integers));
      System.out.println("所有数之和 : " + getSum(integers));
      System.out.println("平均数 : " + getAverage(integers));
      System.out.println("随机数: ");
        
      // 输出10个随机数
      Random random = new Random();
        
      for(int i=0; i < 10; i++){
         System.out.println(random.nextInt());
      }
        
      System.out.println("使用 Java 8: ");
      System.out.println("列表: " +strings);
        
      count = strings.stream().filter(string->string.isEmpty()).count();
      System.out.println("空字符串数量为: " + count);
        
      count = strings.stream().filter(string -> string.length() == 3).count();
      System.out.println("字符串长度为 3 的数量为: " + count);
        
      filtered = strings.stream().filter(string ->!string.isEmpty()).collect(Collectors.toList());
      System.out.println("筛选后的列表: " + filtered);
        
      mergedString = strings.stream().filter(string ->!string.isEmpty()).collect(Collectors.joining(", "));
      System.out.println("合并字符串: " + mergedString);
        
      squaresList = numbers.stream().map( i ->i*i).distinct().collect(Collectors.toList());
      System.out.println("Squares List: " + squaresList);
      System.out.println("列表: " +integers);
        
      IntSummaryStatistics stats = integers.stream().mapToInt((x) ->x).summaryStatistics();
        
      System.out.println("列表中最大的数 : " + stats.getMax());
      System.out.println("列表中最小的数 : " + stats.getMin());
      System.out.println("所有数之和 : " + stats.getSum());
      System.out.println("平均数 : " + stats.getAverage());
      System.out.println("随机数: ");
        
      random.ints().limit(10).sorted().forEach(System.out::println);
        
      // 并行处理
      count = strings.parallelStream().filter(string -> string.isEmpty()).count();
      System.out.println("空字符串的数量为: " + count);
   }
    
   private static int getCountEmptyStringUsingJava7(List<String> strings){
      int count = 0;
        
      for(String string: strings){
        
         if(string.isEmpty()){
            count++;
         }
      }
      return count;
   }
    
   private static int getCountLength3UsingJava7(List<String> strings){
      int count = 0;
        
      for(String string: strings){
        
         if(string.length() == 3){
            count++;
         }
      }
      return count;
   }
    
   private static List<String> deleteEmptyStringsUsingJava7(List<String> strings){
      List<String> filteredList = new ArrayList<String>();
        
      for(String string: strings){
        
         if(!string.isEmpty()){
             filteredList.add(string);
         }
      }
      return filteredList;
   }
    
   private static String getMergedStringUsingJava7(List<String> strings, String separator){
      StringBuilder stringBuilder = new StringBuilder();
        
      for(String string: strings){
        
         if(!string.isEmpty()){
            stringBuilder.append(string);
            stringBuilder.append(separator);
         }
      }
      String mergedString = stringBuilder.toString();
      return mergedString.substring(0, mergedString.length()-2);
   }
    
   private static List<Integer> getSquares(List<Integer> numbers){
      List<Integer> squaresList = new ArrayList<Integer>();
        
      for(Integer number: numbers){
         Integer square = new Integer(number.intValue() * number.intValue());
            
         if(!squaresList.contains(square)){
            squaresList.add(square);
         }
      }
      return squaresList;
   }
    
   private static int getMax(List<Integer> numbers){
      int max = numbers.get(0);
        
      for(int i=1;i < numbers.size();i++){
        
         Integer number = numbers.get(i);
            
         if(number.intValue() > max){
            max = number.intValue();
         }
      }
      return max;
   }
    
   private static int getMin(List<Integer> numbers){
      int min = numbers.get(0);
        
      for(int i=1;i < numbers.size();i++){
         Integer number = numbers.get(i);
        
         if(number.intValue() < min){
            min = number.intValue();
         }
      }
      return min;
   }
    
   private static int getSum(List numbers){
      int sum = (int)(numbers.get(0));
        
      for(int i=1;i < numbers.size();i++){
         sum += (int)numbers.get(i);
      }
      return sum;
   }
    
   private static int getAverage(List<Integer> numbers){
      return getSum(numbers) / numbers.size();
   }
}
  • 输出结果
使用 Java 7: 
列表: [abc, , bc, efg, abcd, , jkl]
空字符数量为: 2
字符串长度为 3 的数量为: 3
筛选后的列表: [abc, bc, efg, abcd, jkl]
合并字符串: abc, bc, efg, abcd, jkl
平方数列表: [9, 4, 49, 25]
列表: [1, 2, 13, 4, 15, 6, 17, 8, 19]
列表中最大的数 : 19
列表中最小的数 : 1
所有数之和 : 85
平均数 : 9
随机数: 
-393170844
-963842252
447036679
-1043163142
-881079698
221586850
-1101570113
576190039
-1045184578
1647841045
使用 Java 8: 
列表: [abc, , bc, efg, abcd, , jkl]
空字符串数量为: 2
字符串长度为 3 的数量为: 3
筛选后的列表: [abc, bc, efg, abcd, jkl]
合并字符串: abc, bc, efg, abcd, jkl
Squares List: [9, 4, 49, 25]
列表: [1, 2, 13, 4, 15, 6, 17, 8, 19]
列表中最大的数 : 19
列表中最小的数 : 1
所有数之和 : 85
平均数 : 9.444444444444445
随机数: 
-1743813696
-1301974944
-1299484995
-779981186
136544902
555792023
1243315896
1264920849
1472077135
1706423674
空字符串的数量为: 2

# Nashorn JavaScript

Nashorn [næʃən] 一个 javascript 引擎。从JDK 1.8开始,Nashorn取代Rhino(JDK 1.6, JDK1.7)成为Java的嵌入式JavaScript引擎。Nashorn完全支持ECMAScript 5.1规范以及一些扩展。它使用基于JSR 292的新语言特性,其中包含在JDK 7中引入的 invokedynamic,将JavaScript编译成Java字节码。与先前的Rhino实现相比,这带来了2到10倍的性能提升。

  • Java 中调用 JavaScript
import javax.script.ScriptEngineManager;
import javax.script.ScriptEngine;
import javax.script.ScriptException;
 
public class Java8Tester {
   public static void main(String args[]){
   
      ScriptEngineManager scriptEngineManager = new ScriptEngineManager();
      ScriptEngine nashorn = scriptEngineManager.getEngineByName("nashorn");
        
      String name = "Runoob";
      Integer result = null;
      
      try {
         nashorn.eval("print('" + name + "')");
         result = (Integer) nashorn.eval("10 + 2");
         
      }catch(ScriptException e){
         System.out.println("执行脚本错误: "+ e.getMessage());
      }
      
      System.out.println(result.toString());
   }
}
  • 输出结果
Runoob
12

# 日期时间 API

Java 8通过发布新的Date-Time API (JSR 310)来进一步加强对日期与时间的处理。

在旧版的 Java 中,日期时间 API 存在诸多问题,其中有:

  • 非线程安全 − java.util.Date 是非线程安全的,所有的日期类都是可变的,这是Java日期类最大的问题之一。
  • 设计很差 − Java的日期/时间类的定义并不一致,在java.util和java.sql的包中都有日期类,此外用于格式化和解析的类在java.text包中定义。java.util.Date同时包含日期和时间,而java.sql.Date仅包含日期,将其纳入java.sql包并不合理。另外这两个类都有相同的名字,这本身就是一个非常糟糕的设计。
  • 时区处理麻烦 − 日期类并不提供国际化,没有时区支持,因此Java引入了java.util.Calendar和java.util.TimeZone类,但他们同样存在上述所有的问题。

Java 8 在 java.time 包下提供了很多新的 API。以下为两个比较重要的 API:

  • Local(本地) − 简化了日期时间的处理,没有时区的问题。
  • Zoned(时区) − 通过制定的时区处理日期时间。

新的java.time包涵盖了所有处理日期,时间,日期/时间,时区,时刻(instants),过程(during)与时钟(clock)的操作。

# 实例

  • 代码
  // 获取当前的日期时间
      LocalDateTime currentTime = LocalDateTime.now();
      System.out.println("当前时间: " + currentTime);
        
      LocalDate date1 = currentTime.toLocalDate();
      System.out.println("date1: " + date1);
        
      Month month = currentTime.getMonth();
      int day = currentTime.getDayOfMonth();
      int seconds = currentTime.getSecond();
        
      System.out.println("月: " + month +", 日: " + day +", 秒: " + seconds);
  • 输出结果
当前时间: 2016-04-15T16:55:48.668
date1: 2016-04-15: APRIL,: 15,: 48

# 参考文献

Java 8 新特性