# JVM垃圾回收

JAVA JVM 2019-02-23

# 垃圾回收

GC (Garbage Collection)的基本原理:将内存中不再被使用的对象进行回收,GC中用于回收的方法称为收集器,由于GC需要消耗一些资源和时间,Java在对对象的生命周期特征进行分析后,按照新生代、旧生代的方式来对对象进行收集,以尽可能的缩短GC对应用造成的暂停。

JAVA中,GC通过确定对象是否被活动对象引用来确定是否收集该对象。目前主流的垃圾收集器都会采用分代回收算法,因此需要将堆内存分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别那些对象应放在新生代,那些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。

如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1.对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

# 对象引用

不同的对象引用类型, GC会采用不同的方法进行回收,JVM对象的引用分为了四种类型:

  • 强引用:默认情况下,对象采用的均为强引用,如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空 间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。

  • 软引用:如果一个对象只具有软引用,那就类似于可有可物的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。 软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA虚拟机就会把这个软引用加入到与之关联的引用队列中。

  • 弱引用:弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。

  • 虚引用:“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。

说明

虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃 圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。 特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速JVM对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生。

# 对象存亡判断

# 引用计数法

给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加1;当引用失效,计数器就减1;任何时候计数器为0的对象就是不可能再被使用的。

这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。 所谓对象之间的相互引用问题,如下面代码所示:除了对象objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为0,于是引用计数算法无法通知 GC 回收器回收他们。

# 可达性分析算法

这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的。

# 回收器作用

垃圾回收器主要负责:

  • 分配内存
  • 保证所有正在被引用的对象还存在于内存中
  • 回收执行代码已经不再引用的对象所占的内存

# 减少GC开销的措施

  • 1)不要显式调用System.gc()。此函数建议JVM进行主GC,虽然只是建议而非一定,但很多情况下它会触发主GC,从而增加主GC的频率,也即增加了间歇性停顿的次数。大大的影响系统性能。

  • 2)尽量减少临时对象的使用。临时对象在跳出函数调用后,会成为垃圾,少用临时变量就相当于减少了垃圾的产生,从而延长了出现上述第二个触发条件出现的时间,减少了主GC的机会。

  • 3)对象不用时最好显式置为Null。一般而言,为Null的对象都会被作为垃圾处理,所以将不用的对象显式地设为Null,有利于GC收集器判定垃圾,从而提高了GC的效率。

  • 4)尽量使用StringBuffer,而不用String来累加字符串。由于String是固定长的字符串对象,累加String对象时,并非在一个String对象中扩增,而是重新创建新的String对象,如Str5=Str1+Str2+Str3+Str4,这条语句执行过程中会产生多个垃圾对象,因为对次作“+”操作时都必须创建新的String对象,但这些过渡对象对系统来说是没有实际意义的,只会增加更多的垃圾。避免这种情况可以改用StringBuffer来累加字符串,因StringBuffer是可变长的,它在原有基础上进行扩增,不会产生中间对象。

  • 5)能用基本类型如Int,Long,就不用Integer,Long对象。基本类型变量占用的内存资源比相应对象占用的少得多,如果没有必要,最好使用基本变量。

  • 6)尽量少用静态对象变量。静态变量属于全局变量,不会被GC回收,它们会一直占用内存。

  • 7)分散对象创建或删除的时间。集中在短时间内大量创建新对象,特别是大对象,会导致突然需要大量内存,JVM在面临这种情况时,只能进行主GC,以回收内存或整合内存碎片,从而增加主GC的频率。集中删除对象,道理也是一样的。它使得突然出现了大量的垃圾对象,空闲空间必然减少,从而大大增加了下一次创建新对象时强制主GC的机会。

# 垃圾收集算法

  • 标记-清除算法 算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。它是最基础的收集算法,效率也很高,但是会带来两个明显的问题:

    • 效率问题
    • 空间问题(标记清除后会产生大量不连续的碎片)
  • 复制算法 为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。

  • 标记-整理算法 根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一段移动,然后直接清理掉端边界以外的内存。

  • 分代收集算法 当前虚拟机的垃圾收集都采用分代收集算法,这种算法没有什么新的思想,只是根据对象存活周期的不同将内存分为几块。一般将java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。

比如在新生代中,每次收集都会有大量对象死去,所以可以选择复制算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清楚”或“标记-整理”算法进行垃圾收集。

# 常见问题

  • 如何判断一个常量是废弃常量 假如在常量池中存在字符串 “abc”,如果当前没有任何String对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,”abc” 就会被系统清理出常量池。

  • 如何判断一个类是无用的类 判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是 “无用的类” :

    • 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
    • 加载该类的 ClassLoader 已经被回收。
    • 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

# 设计选择

在设计或选择垃圾收集算法时, 必须做出许多选择,一下是官方的三种回收设计模式:

回收设计模式

  1. 串行与并行 对于串行收集, 一次只发生一件事。例如, 即使多个 cpu可用, 只有一个用于执行集合。当使用并行集合时, 垃圾回收被拆分为多个部分, 这些子部分在不同的Cpu。同时操作使集合能够更快地完成, 而牺牲了一些额外 的复杂性和潜在的碎片。

官方原文

Memory Management in the JavaHotSpot™ Virtual Machine ,Sun Microsystems, Serial versus Parallel With serial collection, only one thing happens at a time. For example, even when multiple CPUs are available, only one is utilized to perform the collection. When parallel collection is used, the task of garbage collection is split into parts and those subparts are executed simultaneously , on different CPUs. The simultaneous operation enables the collection to be done more quickly, at the expense of some additional complexity and potential fragmentation.

回收设计模式

  1. 并行与停止世界 执行停止到世界垃圾回收时, 应用程序的执行完全在收集过程中挂起。或者, 可以执行一个或多个垃圾收集任务 同时, 即与应用程序同时进行。通常情况下, 并发垃圾回收器同时做它的大部分工作, 但也可能偶尔要做一些短暂的停止世界暂停。停止世界垃圾收集比并发收集更简单, 因为堆是冻结和对象在收集过程中不会更改。它的缺点是, 它可能是某些应用程序不需要暂停。相应地, 暂停时间更短, 当垃圾回收是同时完成的, 但收集器必须格外小心, 因为它正在进行应用程序可能同时更新的对象。这增加了一些开销会影响性能并需要更大的堆大小的并发收集器。

官方原文

Memory Management in the JavaHotSpot™ Virtual Machine ,Sun Microsystems, Concurrent versus Stop-the-world When stop-the-world garbage collection is performed, execution of the application is completely suspended during the collection. Alternatively, one or more garbage collection tasks can be executed concurrently, that is, simultaneously, with the application. Typically, a concurrent garbage collector does most of its work concurrently, but may also occasionally have to do a few short stop-the-world pauses. Stop-the-world garbage collection is simpler than concurrent collection, since the heap is frozen and objects are not changing during the collection. Its disadvantage is that it may be undesirable for some applications to be paused. Correspondingly, the pause times are shorter when garbage collection is done concurrently, but the collector must take extra care, as it is operating over objects that might be updated at the same time by the application. This adds some overhead to concurrent collectors that affects performance and requires a larger heap size.

回收设计模式

  1. 压实与非压实与复制 垃圾回收器确定内存中的哪些对象是活动对象, 哪些是垃圾后, 它可以压缩内存, 将所有的活动对象一起移动在一起, 并完全回收剩余内存。压缩后, 在第一个免费对象上分配一个新对象是很容易和快速的位置。可以使用一个简单的指针来跟踪对象可用的下一个位置分配。与压缩收集器不同的是, 非压实收集器释放空间垃圾对象就地使用, 即它不会移动所有活动对象来创建一个大的回收区域, 就像压实收集器所做的那样。好处是更快地完成垃圾集合, 但缺点是潜在的碎片。一般来说, 分配成本更高从具有就地取消分配的堆, 而不是从压缩的堆。可能有必要搜索堆的连续区域的内存足够大, 以容纳新对象。第三个另一种方法是复制收集器, 将活动对象复制 (或撤离) 到不同的内存区域。这样做的好处是, 源区域可以被认为是空的, 可以快速、方便地使用后续分配, 但缺点是复制所需的额外时间和额外的可能需要的空间。

官方原文

Compacting versus Non-compacting versus Copying After a garbage collector has determined which objects in memory are live and which are garbage, it can compact the memory, moving all the live objects together and completely reclaiming the remaining memory. After compaction, it is easy and fast to allocate a new object at the first free location. A simple pointer can be utilized to keep track of the next location available for object allocation. In contrast with a compacting collector, a non-compacting collector releases the space utilized by garbage objects in-place, i.e., it does not move all live objects to create a large reclaimed region in the same way a compacting collector does. The benefit is faster completion of garbage collection, but the drawback is potential fragmentation. In general, it is more expensive to allocate from a heap with in-place deallocation than from a compacted heap. It may be necessary to search the heap for a contiguous area of memory sufficiently large to accommodate the new object. A third alternative is a copying collector, which copies (or evacuates) live objects to a different memory area. The benefit is that the source area can then be considered empty and available for fast and easy subsequent allocations, but the drawback is the additional time required for copying and the extra space that may be required.

# 参考文献